Mechanisms for mechanical trapping of geologically sequestered carbon dioxide

نویسندگان

  • Yossi Cohen
  • Daniel H. Rothman
چکیده

Carbon dioxide (CO2) sequestration in subsurface reservoirs is important for limiting atmospheric CO2 concentrations. However, a complete physical picture able to predict the structure developing within the porous medium is lacking. We investigate theoretically reactive transport in the long-time evolution of carbon in the brine-rock environment. As CO2 is injected into a brine-rock environment, a carbonate-rich region is created amid brine. Within the carbonate-rich region minerals dissolve and migrate from regions of high-to-low concentration, along with other dissolved carbonate species. This causes mineral precipitation at the interface between the two regions. We argue that precipitation in a small layer reduces diffusivity, and eventually causes mechanical trapping of the CO2. Consequently, only a small fraction of the CO2 is converted to solid mineral; the remainder either dissolves in water or is trapped in its original form. We also study the case of a pure CO2 bubble surrounded by brine and suggest a mechanism that may lead to a carbonate-encrusted bubble owing to structural diffusion.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pore-Level Modeling of Carbon Dioxide Sequestration in Oil Fields: A study of viscous and buoyancy forces

Underground injection of carbon dioxide for enhanced oil recovery (EOR) is a common practice in the oil and gas industry and has often been cited as a proven method of sequestering CO2 (US DOE, 1999). Of all sequestration methods, this is probably the best understood, as carbon dioxide has been used in the oil industry for many years. Additionally, most oil fields have been relatively well char...

متن کامل

Modeling of Combustion and Carbon Oxides Formation in Direct Injection Diesel Engine

When looking at the effects of diesel engine exhaust on the environment, it is important to first look at the composition of the exhaust gases. Over 99.5% of the exhaust gases are a  combination of  nitrogen, oxygen, carbon dioxide, and water. With the exception of carbon  dioxide, which contributes about  5% of the total volume, the diesel engine exhaust consists of  elements which are part of...

متن کامل

Thesis : MODELING OF MINERAL TRAPPING FOR CO 2 SEQUESTRATION

Title of Thesis: MODELING OF MINERAL TRAPPING FOR CO2 SEQUESTRATION Mohammad Alizadeh Nomeli, MS, 2011 Thesis Directed By: Advisor: Dr. Amir Riaz Co-advisor: Dr. Alba Torrents Department of Civil and Environmental Engineering In order to prevent CO2 concentrations in the atmosphere from rising to unacceptable levels, carbon dioxide is sequestered beneath the ground surface. CO2 can be trapped a...

متن کامل

Investigating carbon emission abatement long-term plan with the aim of energy system modeling; case study of Iran

Increasing electric vehicles usage, as a promising solution for environmental issues, might have unexpected implications, since it entails some changes in different sectors and scales in energy system. In this respect, this research aims at investigating the long-term impacts of electric vehicles deployment on Iran's energy system. Accordingly, Iran's energy system was analyzed by LEAP model in...

متن کامل

Statistical trend analysis and forecast modeling of air pollutants

The study provides a statistical trend analysis of different air pollutants using Mann-Kendall and Sen’s slope estimator approach on past pollutants statistics from air quality index station of Varanasi, India. Further, using autoregressive integrated moving average model, future values of air pollutant levels are predicted. Carbon monoxide, nitrogen dioxide, sulphur dioxide, particu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 471  شماره 

صفحات  -

تاریخ انتشار 2015